Tchebycheff approximations by functions unisolvent of variable degree

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best Approximations by Smooth Functions

THEOREM 1.1 (U. Sattes). Let r > 2 and g E C[O, l]\B$,‘. Then f”EB$’ is a best approximation to g, in L” (such a best approximation necessari/J) exisrs) if and only if there exists a subinterual (a, /?) c IO. 1 I and a positilse integer M > r + 1 for which the following conditions hold (i) f”l,n.ll, is a Perfect spline of degree r with exactly) M ~ r -1 knots arzd I.f”““(s)l = I a. e. on [u,pI....

متن کامل

Construction of Odd-Variable Resilient Boolean Functions with Optimal Degree

In this paper, we investigate the problem of obtaining new construction methods for resilient Boolean functions. Given n (n odd and n ≥ 35), we firstly provide degree optimized 1-resilient n-variable functions with currently best known nonlinearity. Then we extend our method to obtain m-resilient (m > 1) Boolean functions with degree n − m − 1, we show that these Boolean functions also achieve ...

متن کامل

The use of radial basis functions by variable shape parameter for solving partial differential equations

In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1961

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1961-0136913-8